Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Using network evolution theory and singular value decomposition method to improve accuracy of link prediction in social networks

Meng Q. and kennedy, P.J.

    Link prediction in large networks, especially social networks, has received significant recent attention. Although there are many papers contributing methods for link prediction, the accuracy of most predictors is generally low as they treat all nodes equally. We propose an effective approach to identifying the level of activities of nodes in networks by observing their behaviour during network evolution. It is clear that nodes that have been active previously contribute more to the changes in a network than stable nodes, which have low activity. We apply truncated singular value decomposition (SVD) to exclude the interference of stable nodes by treating them as noise in our dataset. Finally, in order to test the effectiveness of our proposed method, we use co-authorship networks from an Australian university from between 2006 and 2011 as an experimental dataset. The results show that our proposed method achieves higher accuracy in link prediction than previous methods, especially in predicting new links.
Cite as: Meng Q. and kennedy, P.J. (2012). Using network evolution theory and singular value decomposition method to improve accuracy of link prediction in social networks. In Proc. Data Mining and Analytics 2012 (AusDM 2012) Sydney, Australia. CRPIT, 134. Zhao, Y., Li, J. , Kennedy, P.J. and Christen, P. Eds., ACS. 175 - 182
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS